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We give a semigroup characterization of kaleidoscopical graphs. A connected graph Γ (con-

sidered as a metric space with the path metric) is called kaleidoscopical if there is a vertex
coloring of Γ which is bijective on each unit ball.
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Предложена полугрупповая характеризация калейдоскопических графов. Связный
граф Γ (как метрическое пространство с метрикой кратчайших расстояний между верши-
нами) называется калейдоскопическим, если существует раскраска множества вершин Γ,
биективная на каждом единичном шаре.

Let Γ(V,E) be a connected graph with the set of vertices V and the set of edges E, d be
the path metric on V , B(v, r) = {u ∈ V : d(v, u) ≤ r}, v ∈ V, r ∈ ω = {0, 1, ...}.

A graph Γ(V,E) is called kaleidoscopical [4] if there exists a coloring (a surjective map-
ping) χ : V → κ, κ is a cardinal, such that the restriction χ|B(v, 1) : B(v, 1)→ κ is a bijection
on each unit ball B(v, 1), v ∈ V. For kaleidoscopical graphs see also [2, Chapter 6] and [3].

Let G be a group, X be a transitive G-space with the action G×X → X, (g, x) 7−→ gx.
A subset A of X, |A| = κ is said to be a kaleidoscopical configuration [1] if there exists
a coloring χ : X → κ such that, for each g ∈ G, the restriction χ|gA : gA→ κ is a bijection.

We note that kaleidoscopical graphs and kaleidoscopical configurations can be considered
as partial cases of kaleidoscopical hypergraphs defined in [2, p.5]. Recall that a hypergraph
is a pair (X,F) where X is a set, F is a family of subsets of X.

A hypergraph (X,F) is said to be kaleidoscopical if there exists a coloring χ : X → κ such
that, for each F ∈ F, the restriction χ | F : F → κ is a bijection.

Clearly, a graph Γ(V,E) is kaleidoscopical if and only if the hypergraph (V, {B(v, 1) :
v ∈ V }) is kaleidoscopical. A subset A of a G-space X is kaleidoscopical if and only if the
hypergraph (X, {g(A) : g ∈ G}) is kaleidoscopical.

We say that two hypergraphs (X1,F1), (X2,F2) with kaleidoscopical colorings χ1:X1 → κ,
χ2 : X2 → κ are kaleidoscopically isomorphic if there is a bijection f : X1 → X2 such that
• ∀A ⊆ X1 : A ∈ F1 ⇐⇒ f(A) ∈ F2;
• ∀x ∈ X1 : χ1(x) = χ2(f(x)).
We describe an algebraic construction which up to isomorphisms gives all kaleidoscopical

graphs.
The kaleidoscopical semigroup KS(κ) is a semigroup in the alphabet κ determined by

the relations xx = x, xyx = x for all x, y ∈ κ. For our purposes, it is convenient to identify
KS(κ) with the set of all non-empty words in κ with no factors xx, xyx where x, y ∈ κ.
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For every x ∈ κ, the set KG(κ, x) of all words from KS(κ) with the first and the last
letter x is a subgroup (with the identity x) of the semigroup KS(κ). To obtain the inverse
element to the word w ∈ KG(κ, x) it suffices to write w in the inverse order. The group
KG(κ, x) is called the kaleidoscopical group in the alphabet κ with the identity x.

For finite cardinals κ, the following theorem is proved in [2, p.64–66] but corresponding
arguments work for arbitrary κ.

Theorem 1. For any cardinal κ, the following statements hold:
• The only idempotents of the semigroupKS(κ) are the words x, xy where x, y ∈ κ, x 6= y.
• The kaleidoscopical group KG(k, x) is a free group with the set of free generators

{xyzx : y, z ∈ κ\{x}, y 6= z}.

• The kaleidoscopical semigroup KS(κ) is isomorphic to the sandwich product L(x) ×
KG(κ, x)×R(x) with the multiplication

(l1, g1, r1)(l2, g2, r2) = (l1, g1r1l2g2, r2),

where L(x) = {yx : y ∈ κ}, R(x) = {xy : y ∈ κ}.

We fix x ∈ κ, denote by æ(w) the first letter of the word w ∈ KS(κ) and say that
an equivalence ∼ on KS(κ) is kaleidoscopical if, for all w,w′ ∈ KS(κ) and y ∈ κ,

w ∼ w′ → æ(w) = æ(w′) ∧ yw = yw′,

w ∼ w′ ⇐⇒ wx ∼ w′x.

Let [w] be the class of equivalence ∼ containing w ∈ KS(κ).
We put

Sx = [x] ∩KG(κ, x),

observe that Sx is a subgroup of KG(κ, x) and show that ∼ is uniquely determined by Sx

w ∼ w′ ⇐⇒ æ(w) = æ(w′) ∧ xwx ∼ xw′x⇐⇒ (xwx)−1(xw′x) ∈ Sx.

We see also that any subgroup of KG(κ, x) can be taken as Sx to determine a kalei-
doscopical equivalence on KS(κ).

A kaleidoscopical equivalence ∼ determines a graph Γ(κ,∼) with the set of vertices
KS(κ)/ ∼ and the set of edges E defined by the rule

(u, v) ∈ E ⇐⇒ ∃ w ∈ u ∃ y ∈ κ : æ(w) 6= y ∧ yw ∈ v.

A coloring χ : KS(κ)/ ∼→ κ defined by χ([w]) = æ(w) shows that Γ(κ,∼) is kalei-
doscopical.

Now let Γ(V,E) be a kaleidoscopical graph with kaleidoscopical coloring χ : V → κ. We
define a transitive action of the semigroup KS(κ) on the set V as follows. Let v ∈ V , x ∈ κ.
Pick u ∈ B(v, 1) such that χ(u) = x and put x(v) = u. Then we extended the action onto
KS(κ) inductively. If w = KS(κ), w = xw′, w′ ∈ KS(κ), x ∈ κ, we put w(v) = x(w′(v)).
Given any v1, v2 ∈ V , the sequence of colors of the vertices on a path from v1 to v2 determines
a word w ∈ KS(κ) such that w(v1) = v2 so KS(κ) acts on V transitively. Clearly, the group
KG(κ, x) acts transitively on the set χ−1(x) of vertices of color x.
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We fix v ∈ V with χ(v) = x, determine a kaleidoscopical equivalence ∼ on KS(κ)
by the rule w ∼ w′ ⇐⇒ w(v) = w′(v), and note that the graphs Γ(V,E) and Γ(κ,∼)
are kaleidoscopically isomorphic via bijection f : V → KS(κ)/ ∼, f(u) = {w ∈ KS(κ) :
w(v) = u}.

All above considerations are focused in the following theorem.

Theorem 2. For every kaleidoscopical graph Γ(V,E) with kaleidoscopical coloring χ : V →
κ, there exists a kaleidoscopical equivalence ∼ on the semigroup KS(κ) such that Γ(V,E)
is kaleidoscopically isomorphic to Γ(κ,∼). Every kaleidoscopical equivalence ∼ on KS(κ) is
uniquely determined by some subgroup of the group KG(κ, x).

Every group G can be considered as a G-space with the left regular action (g, x) 7−→ yx.
Let A be a kaleidoscopical configuration in G. By [1, Corollary 1.3], A is complemented,
i.e. there exists a subset B of G such that the multiplication A × B → G, (a, b) 7−→ ab is
bijective.

Let A be a system of generators of a group G such that A = A−1 and e ∈ A, e is
the identity of G. We consider the Cayley graph Cay(G,A) with the set of vertices G and
the set of edges E defined by the rule

(g, h) ∈ E ⇐⇒ g−1h ∈ A, g 6= h.

Clearly, Cay(G,A) is connected. Assume that Cay(G,A) is kaleidoscopical with kalei-
doscopical coloring χ : G → |A|. Since B(g, 1) = gA and χ is bijective on each ball B(g, 1),
we see that A is a kaleidoscopical configuration. On the other hand, if A is a kaleidoscopical
configuration in G with kaleidoscopical coloring χ : G → A then χ is bijective on each set
gA so Cay(G,A) is kaleidoscopical. Thus, we get the following theorem.

Theorem 3. Let G be a group, A be a system of generators of G such that A = A−1 and
e ∈ A. Then A is a kaleidoscopical configuration if and only if Cay(G,A) is kaleidoscopical.

We conclude the paper with two open questions.
Question 1. How to detect whether a kaleidoscopical hypergraph is kaleidoscopically iso-
morphic to a hypergraph of unit balls of some kaleidoscopical graph?
Question 2. How to detect whether a kaleidoscopical hypergraph is kaleidoscopically iso-
morphic to a hypergraph determined by a kaleidoscopical configuration in a G-space.
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